复合铜箔行业深度报告:产业化进程加速PET铜箔为当下主流

锂电集流体减薄、降本要求日益提升,催生新型集流体发展迅速。一方面,集流体作为 电池的重要组成部分,是实现电池化学能转化为电能并对外输出的关键要素,另一方面 集流体并不贡献实际的电池容量,并且其质量约占锂电池总质量的 12%,成本约占锂电 池总成本的 8%。因此锂电池集流体重量及厚度的减小,不仅有利于提升电池活性物质的 体积,从而提升电池的能量密度,而且有利于降低集流体的原材料成本。

减薄趋势下,锂电池存在安全隐患,复合集流体材料有望打破瓶颈。越薄的锂电集流体 其抗张能力和抗压变形能力越低,箔面出现断裂或裂缝的可能性较大,从而容易引发热 失控。同时,传统集流体在受外力碰撞时容易产生毛刺,进而引发短路等安全隐患,因 此兼具安全性等优势的复合集流体有望成为未来的发展趋势。

传统集流体是由纯度较高的单金属或合金制成,目前在锂离子电池集流体材料的选择上, 使用较多的为铝箔和铜箔,其作用是承载电池正负极活性物质,并将活性物质产生的电子汇集起来形成电流对外输出;而复合集流体是一种以高分子基膜材料作为中间层,两 边分别以其他功能金属作为镀层的一种夹层状导电薄膜材料,当前使用较多的为复合铜 箔及复合铝箔。

相较于传统集流体,复合集流体在材料构成、工艺原理以及性能特点等方面均有不同:1)材料的构成上,传统集流体通常以高纯度的单金属或合金制成,比如传统铝箔由电 解铝制成,电解铝含铝量在 99.5%-99.8%之间,而复合集流体原材料包括高分子材料 (PET/PP/PI)、金属材料与粘结剂;2)工艺原理上,传统铝箔使用辊压方式,经过粗轧、 中轧、精轧等流程最终轧制成片材;传统铜箔主要包括延压法和电解法,前者利用塑性 加工原理通过对高精度铜带反复轧制-退火而成,后者通过硫酸铜溶液在直流电的作用 下,利用电解设备电沉积而成;而复合集流体以蒸镀、水电镀工艺为核心,利用蒸镀、 水电镀技术将金属材料涂覆到基材表面。

3)性能特点上,传统集流体内阻更小且工艺成熟,复合集流体在成本、安全性能、重 量上具有替代优势。复合集流体使用高分子材料部分替换金属材料,由于高分子材料成 本普遍低于金属材料且其电性能、化学性能、热性能、机械性能优良,因此在成本、安 全性等方面上优于传统集流体;除此之外,高分子材料重量较轻、理论减薄空间较大, 能够提高电池能量密度,增加续航能力。但是,传统集流体由于只有金属构成,因此内 阻较低,对于电子的汇集和电流传输更具有优势。

复合铜箔是指以高分子材料为中间层,两边分别以金属铜为镀层的薄膜材料。目前复合 铜箔中间层的主要路线包括 PET、PP、PI 三种,不同的高分子材料由于具有不同的各项 性能,因此其下游应用场景也具有差异。

PET、PP、PI 用作复合铜箔的基膜材料时各有优劣:PET 综合性能最好,但不耐酸碱易 溶于电解液;PP 密度低,集流体减重上限更高,对电池能量密度提升明显;PI 性能最 优,但成本较高。具体来说,PET 材料具有较强的韧性和较好的热性能及电绝缘性,常 用于制作热收缩膜、抗静电膜、高光亮膜、反光膜、化学涂布膜等材料;PP 材料的突出 优势在于其化学性能稳定,通常用于制作各种化工管道及其配件;PI 材料性能突出,具 有极强的耐热性、电绝缘性和优良的机械性能,但成本较高,主要应用于航空、航海、 宇宙飞船、火箭导弹、原子能、电子电器工业等各个领域。

复合铜箔在安全性能、原材料成本以及对电池能量密度提升方面优势明显,契合锂电池 集流体发展方向。复合铜箔使用高分子材料置换传统铜箔中的部分金属铜,高分子材料 相对于铜材,能够有效的增强集流体的韧性与绝缘性,减少金属铜的使用量,进而减小 集流体的厚度与重量,为正负极活性材料提供更多空间。

电池系统热安全事故主要表现为电池热失控,电滥用、机械滥用和热滥用均能引发电池 热失控。电滥用是指锂电池过充电、过放电容易引起锂枝晶生长,枝晶穿刺隔膜将会导 致正负极相接,进而引发电池短路;机械滥用是指电池在外力作用下发生形变,如碰撞、 挤压、穿刺、振动等,容易导致隔膜被破坏,电池正负极短路而诱发热失控;热滥用是 指锂电池在高温环境下长时间工作,会使得隔膜在高温下瓦解,进而导致电池短路。复合铜箔能有效抑制锂枝晶生长,穿刺时阻断电流防止热失控。复合铜箔使用高分子材 料作为中间层,在动力电池处于电滥用或机械滥用环境中时,一方面,柔性高分子材料 的应力松弛机制能够使得锂均匀沉积从而抑制锂枝晶生长,避免薄膜断裂产生毛刺,另 一方面,即便电池发生短路,材料的电绝缘性能够降低电池短路电流,改善电池的安全 性;此外,当动力电池处于高温环境或发生热失控时,由于高分子材料在热源影响下, 会向远离热源方向收缩,进而牵引靠近热源的铜膜远离热源,自动切断失效电路。

复合铜箔能缩减金属铜用量,进而减少箔材单位面积成本。传统铜箔在“铜价+加工费” 模式定价下,原材料成本占比较大。根据中一科技 22H1 报告披露,原材料占标准铜箔 及锂电铜箔各类产品单位成本比重基本处于 70%-85%区间。根据我们测算,以 6.5μm 的 复合铜箔为例,每平米原材料成本为 1.26 元,相比于 6μm 传统铜箔原材料成本下降 65%,相比于 4.5μm 传统铜箔成本下降 54%。

复合铜箔使用低密度的高分子材料置换部分金属铜,能够降低集流体重量和厚度,从而 提升电池能量密度。复合铜箔在保证导电层导电性能和集流性能前提下,一方面,可以 利用高分子材料的韧性等特点减薄集流体厚度,即不影响电池安全性能又能够扩大正负 极活性材料的体积;另一方面能够降低集流体重量,从而提高电池能量密度。根据比亚 迪的实验数据,负极采用 3μm 的基膜+上下各 1μm 铜箔层的复合集流体,电池能量密 度较 6μm 的传统铜箔集流体可提升 3.3%;若正极也采用复合集流体,电池能量密度可 合计提升 6.1%。

上游铜价高位上行,推动铜箔降本进程加速。近年来上游铜价持续上涨,自2020年初至 今,铜价涨幅达到40%左右,原料端降本需求日益增强。价格方面,2022年长江有色金属 网铜均价为6.75万元/吨,同时PET材料平均价格为0.84万元/吨。相比之下,PET材料价 格仅为铜价的1/8左右,且复合铜箔用铜量小,对金属铜依赖降低,理论上PET复合铜箔 单位材料的用铜量仅为传统铜箔的1/3左右。随着PET复合铜箔工艺逐步成熟和良率持续 提升,后期形成规模效应后其降本空间较为明确。

相比于传统铜箔,PET复合铜箔的原材料成本可下降64%,单位面积重量可下降68%。由 于PET等基膜成本较低,经测算,6.5微米(4.5微米PET+2微米铜)复合铜箔的原材料成 本为1.3元/m 2,较6微米传统铜箔低64.23%;单位面积重量较传统铜箔下降67.67%。其中, 测算的假设为:1)铜价采取2022年长江有色金属网铜均价,约为6.75万元/吨;PET基膜 价格为0.84万元/吨;2)假设铜靶材价格为铜价两倍,铜靶材溅射的铜厚度为60纳。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注